AP 2001 / AI (NT)

1.0 Gegeben sind die reellen Funktionen

$$f_k: x \mapsto f_k(x); \quad D_{f_k} = \mathbb{R}$$

$$f_k(x) = \frac{1}{4}x^3 - kx + 4$$
 mit $k \ge 0 \land k \in \mathbb{R}$.

Der Graph einer solchen Funktion f_k in einem kartesischen Koordinatensystem wird mit G_{fk} bezeichnet.

- 1.1.1 Bestimmen Sie die Koordinaten des Wendepunktes W des Graphen $G_{\rm fk}$ und begründen Sie, dass der Punkt W Wendepunkt eines jeden Graphen $G_{\rm fk}$ ist . (Teilergebnis: $x_{\rm W}$ =0.) (4 BE)
- 1.1.2 Ermitteln Sie in Abhängigkeit von k die maximalen Intervalle, in denen die Funktion f_k echt monoton zunehmend ist. (5 BE)
- 1.1.3 Zeigen Sie, dass für einen geeigneten Wert von k die Gerade mit der Gleichung y = -3x + 4 Wendetangente des zugehörigen Graphen G_{fk} ist. (3 BE)
- 1.2.0 Setzen Sie für die folgenden Teilaufgaben k = 3.
- 1.2.1 Bestimmen Sie die Nullstellen der Funktion f_3 mit ihren Vielfachheiten und zerlegen Sie den Funktionsterm $f_3(x)$ in Linearfaktoren. (7 BE)
- 1.2.2 Geben Sie unter Verwendung bisheriger Ergebnisse Art und Koordinaten der relativen Extrempunkte des Graphen G_{f3} an und zeichnen Sie diesen Graphen für $-4 \le x \le 3$ mit Hilfe einer geeigneten Wertetabelle.

Maßstab auf beiden Achsen: 1 LE = 1 cm. (7 BE)

- 1.3.0 Die Parabel G_p ist der Graph der quadratischen Funktion $p: x \mapsto p(x)$; $D_p = \mathbb{R}$. Die Funktion p hat bei $x_0 = -4$ eine Nullstelle. Ihr Graph G_p schneidet den Graphen G_{f3} auf der y-Achse und hat in diesem Schnittpunkt die Steigung $m = \frac{1}{3}$.
- 1.3.1 Bestimmen Sie den Funktionsterm p(x).

(Ergebnis:
$$p(x) = -\frac{1}{6}x^2 + \frac{1}{3}x + 4$$
) (6 BE)

- 1.3.2 Berechnen Sie die Koordinaten des Scheitelpunktes der Parabel G_p und zeichnen Sie diese Parabel für $-4 \le x \le 3$ in das vorhandene Koordinatensystem ein. (4 BE)
- 1.4.0 Gegeben ist nun die Funktion $s: x \mapsto s(x) = f_3(x) t(x)$; $D_s = \mathbb{R}$, wobei der Graph G_t die Tangente an die Parabel G_p an der Stelle $x_0 = -4$ ist.
- 1.4.1 Zeigen Sie, dass sich der Funktionsterm s(x) in der Form

$$s(x) = \frac{1}{4}x^3 - \frac{14}{3}x - \frac{8}{3} \text{ schreiben lässt.}$$
 (4 BE)

1.4.2 Begründen Sie, dass die Funktion s im Intervall [-1; 0] genau eine Nullstelle hat . (6 BE)